38 resultados para Etanol

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethanol is the most overused psychoactive drug over the world; this fact makes it one of the main substances required in toxicological exams nowadays. The development of an analytical method, adaptation or implementation of a method known, involves a process of validation that estimates its efficiency in the laboratory routine and credibility of the method. The stability is defined as the ability of the sample of material to keep the initial value of a quantitative measure for a defined period within specific limits when stored under defined conditions. This study aimed to evaluate the method of Gas chromatography and study the stability of ethanol in blood samples, considering the variables time and temperature of storage, and the presence of preservative and, with that check if the conditions of conservation and storage used in this study maintain the quality of the sample and preserve the originally amount of analyte present. Blood samples were collected from 10 volunteers to evaluate the method and to study the stability of ethanol. For the evaluation of the method, part of the samples was added to known concentrations of ethanol. In the study of stability, the other side of the pool of blood was placed in two containers: one containing the preservative sodium fluoride 1% and the anticoagulant heparin and the other only heparin, was added ethanol at a concentration of 0.6 g/L, fractionated in two bottles, one being stored at 4ºC (refrigerator) and another at -20ºC (freezer), the tests were performed on the same day (time zero) and after 1, 3, 7, 14, 30 and 60 days of storage. The assessment found the difference in results during storage in relation to time zero. It used the technique of headspace associated with gas chromatography with the FID and capillary column with stationary phase of polyethylene. The best analysis of chromatographic conditions were: temperature of 50ºC (column), 150ºC (jet) and 250ºC (detector), with retention time for ethanol from 9.107 ± 0.026 and the tercbutanol (internal standard) of 8.170 ± 0.081 minutes, the ethanol being separated properly from acetaldehyde, acetone, methanol and 2-propanol, which are potential interfering in the determination of ethanol. The technique showed linearity in the concentration range of 0.01 and 3.2 g/L (0.8051 x + y = 0.6196; r2 = 0.999). The calibration curve showed the following equation of the line: y = x 0.7542 + 0.6545, with a linear correlation coefficient equal to 0.996. The average recovery was 100.2%, the coefficients of variation of accuracy and inter intra test showed values of up to 7.3%, the limit of detection and quantification was 0.01 g/L and showed coefficient of variation within the allowed. The analytical method evaluated in this study proved to be fast, efficient and practical, given the objective of this work satisfactorily. The study of stability has less than 20% difference in the response obtained under the conditions of storage and stipulated period, compared with the response obtained at time zero and at the significance level of 5%, no statistical difference in the concentration of ethanol was observed between analysis. The results reinforce the reliability of the method of gas chromatography and blood samples in search of ethanol, either in the toxicological, forensic, social or clinic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gradual inclusion of biofuels is a necessary change that countries must include in their energy mixes. Energy sources still widely used in the world, such as oil and coal, are endowed with a high pollution load to the environment, bringing damages to the water, to the air and to humans as well. In addition, although there are conflicting studies, they are also identified as major causes of the greenhouse effect and the global warming phenomenon. They are, moreover, finite sources of energy, given that its reserves will surely run out. However, even if the introduction of biofuels, such as ethanol, in the energy mix is crucial for the survival of the present and future populations, this insertion cannot settle so disorderly and, thus, one must ensure the quality of these resources and promote transparency in international trade. In this manner, a certification process for ethanol is essential to attest that this biofuel meets the sustainable requirements defined for its production. Hence, this study sought to address the importance of the adoption of certification in the ethanol industry, according to the principle of sustainable development, by analyzing the evolution of its concept, its combination with the fundamental objectives sculptured in the Constitution of 1988, its regulation under Brazilian laws and the need for a balance between economic activities and the mentioned principle. The work also encompassed the criteria used to establish certification standards and their participating actors, combined with a study of ongoing initiatives. Finally, the consequences of the adoption of a certification process for ethanol in Brazil were presented, both in terms of sustainable development and in international trade

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anhydrous ethanol is used in chemical, pharmaceutical and fuel industries. However, current processes for obtaining it involve high cost, high energy demand and use of toxic and pollutant solvents. This problem occurs due to the formation of an azeotropic mixture of ethanol + water, which does not allow the complete separation by conventional methods such as simple distillation. As an alternative to currently used processes, this study proposes the use of ionic liquids as solvents in extractive distillation. These are organic salts which are liquids at low temperatures (under 373,15 K). They exhibit characteristics such as low volatility (almost zero/ low vapor ), thermal stability and low corrosiveness, which make them interesting for applications such as catalysts and as entrainers. In this work, experimental data for the vapor pressure of pure ethanol and water in the pressure range of 20 to 101 kPa were obtained as well as for vapor-liquid equilibrium (VLE) of the system ethanol + water at atmospheric pressure; and equilibrium data of ethanol + water + 2-HDEAA (2- hydroxydiethanolamine acetate) at strategic points in the diagram. The device used for these experiments was the Fischer ebulliometer, together with density measurements to determine phase compositions. The experimental data were consistent with literature data and presented thermodynamic consistency, thus the methodology was properly validated. The results were favorable, with the increase of ethanol concentration in the vapor phase, but the increase was not shown to be pronounced. The predictive model COSMO-SAC (COnductor-like Screening MOdels Segment Activity Coefficient) proposed by Lin & Sandler (2002) was studied for calculations to predict vapor-liquid equilibrium of systems ethanol + water + ionic liquids at atmospheric pressure. This is an alternative for predicting phase equilibrium, especially for substances of recent interest, such as ionic liquids. This is so because no experimental data nor any parameters of functional groups (as in the UNIFAC method) are needed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigated the potential of different residual lignocellulosic materials generated in rural and urban areas (coconut fibre mature, green coconut shell and mature coconut shell), and vegetable cultivated in inhospitable environments (cactus) aimed at the production of ethanol, being all materials abundant in the Northeast region of Brazil. These materials were submitted to pretreatments with alkaline hydrogen peroxide followed by sodium hydroxide (AHP-SHP), autohydrolysis (AP), hydrothermal catalyzed with sodium hydroxide (HCSHP) and alkali ethanol organosolv (AEOP). These materials pretreated were submitted to enzymatic hydrolysis and strategies of simultaneous saccharification and fermentation (SSF) and saccharification and fermentation semi-simultaneous (SSSF) by Saccharomyces cerevisiae, Zymomonas mobilis and Pichia stipitis. It was also evaluated the presence of inhibitory compounds (hydroxymethylfurfural, furfural, acetic acid, formic acid and levulinic acid) and seawater during the fermentative process. Materials pretreated with AHP-SHP have resulted in delignification of the materials in a range between 54 and 71%, containing between 51.80 and 54.91% of cellulose, between 17.65 and 28.36% of hemicellulose, between 7.99 and 10.12% of lignin. Enzymatic hydrolysis resulted in the conversions in glucose between 68 and 76%. Conversion yields in ethanol using SSF and SSSF for coconut fibre mature pretreated ranged from 0.40 and 0.43 g/g, 0.43 and 0.45 g/g, respectively. Materials pretreated by AP showed yields of solids between 42.92 and 92.74%, containing between 30.65 and 51.61% of cellulose, 21.34 and 41.28% of lignin. Enzymatic hydrolysis resulted in glucose conversions between 84.10 and 92.52%. Proceeds from conversion into ethanol using green coconut shell pretreated, in strategy SSF and SSSF, were between 0.43 and 0.45 g/g. Coconut fibre mature pretreated by HCSHP presented solids yields between 21.64 and 60.52%, with increased in cellulose between 28.40 and 131.20%, reduction of hemicellulose between 43.22 and 69.04% and reduction in lignin between 8.27 and 89.13%. Enzymatic hydrolysis resulted in the conversion in glucose of 90.72%. Ethanol yields using the SSF and SSSF were 0.43 and 0.46 g/g, respectively. Materials pretreated by AEOP showed solid reductions between 10.75 and 43.18%, cellulose increase up to 121.67%, hemicellulose reduction up to 77.09% and lignin reduced up to 78.22%. Enzymatic hydrolysis resulted in the conversion of glucose between 77.54 and 84.27%. Yields conversion into ethanol using the SSF and SSSF with cactus pretreated ranged from 0.41 and 0.44 g/g, 0.43 and 0.46 g/g, respectively. Fermentations carried out in bioreactors resulted in yields and ethanol production form 0.42 and 0.46 g/g and 7.62 and 12.42 g/L, respectively. The inhibitory compounds showed negative synergistic effects in fermentations performed by P. stipitis, Z. mobilis and S. cerevisiae. Formic acid and acetic acid showed most significant effects among the inhibitory compounds, followed by hydroxymethylfurfural, furfural and levulinic acid. Fermentations carried out in culture medium diluted with seawater showed promising results, especially for S. cerevisiae (0.50 g/g) and Z. mobilis (0.49 g/g). The different results obtained in this study indicate that lignocellulosic materials, pretreatments, fermentative processes strategies and the microorganisms studied deserve attention because they are promising and capable of being used in the context of biorefinery, aiming the ethanol production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol-dependent individuals who reduce or discontinue its use may present Alcohol Withdrawal Syndrome, which is characterized by unpleasant signs and symptoms, such as anxiety, that may trigger relapses. Ethanol, a psychotropic drug, is able to promote behavioral and neurophysiological changes, acting on different neurotransmitter systems, including the serotonergic, which has also been directly associated with aversive states, including anxiety. This study aimed to investigate the participation of type 7 serotonin receptor (5-HT7) of the dorsal periaqueductal gray (DPAG) on basal experimental anxiety and that caused by ethanol withdrawal. For this, 75-100 days old Wistar rats were subjected to two experiments. On the first one, animals underwent stereotactic surgery for implantation of guide cannulas used for administration of the drug directly into the DPAG. After seven days, the animals received doses of 2.5; 5 and 10 nmols of type 7 receptor antagonist SB269970 (SB) or vehicle intra-DPAG and, ten minutes after, they were exposed to elevated plus maze (EPM). In the following day, the animals were submitted to the same treatment and tested in the open field (OF). In the second experiment, animals received increasing concentrations (2%, 4%, 6%) of ethanol as the only source of liquid diet or water (control group), both with free access to chow. Seventy two hours and ninety six hours after the ethanol withdrawal, animals received SB (2.5 and 5.0 nmols) intraDPAG ten minutes before the test in the LCE and OF, respectively. In experiment 1, the dose of antagonist 10 nmols was able of reversing the anxiety generated by EPM. In the experiment 2, ineffective SB doses on the LCE (2.5 and 5.0 nmol) were not able to reverse the anxiety caused by the ethanol withdrawal in the EPM, although the dose of 2.5 nmols of SB has reversed its hipolocomotor effect in this test. This result suggests that the 5-HT7 receptor is involved in the modulation of the basal experimental anxiety in rats, but not in the anxiety caused by ethanol withdrawal in the DPAG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol withdrawn individuals present a wealth of signs and symptoms, some of them related with anxiety. To better understand brain areas involved in anxiety caused by ethanol abstinence, preclinical studies have been employing models of ethanol consumption followed by withdrawal in rodents submitted to behavioral tests of anxiety, such as the elevated plus-maze. The aim of this study was to investigate if short- or long-term ethanol withdrawal could alter both anxiety-related behaviors in the elevated plus-maze (EPM) and open field tests and the number of serotonin immunorreactive cels in the dorsal raphe nucleus, a midbrain area associated with anxiety. Female Wistar rats (90 days old) were submitted to increasing concentrations of ethanol (2% for 3 days, 4% for 3 days and 6% for 15 days) as the only source of liquid diet and the control group received water ad libitum. Both groups received food ad libitum. In the behavioral experiments, on 21st day of consumption, ethanol was substituted by water (withdrawal) and 72 h or 21 days after withdrawal animals were submitted to the EPM, where it was evaluated the percentage of time and entries in the open arms and the entries in the enclosed arms during 5 minutes. Twenty and four hours after testing in the EPM, animals were submitted to the open field test for 15 minutes, where the distance traveled by the animals was observed along this period. During the first 5 minutes, the distance traveled, entries and time spent in the center of the test were analyzed. In the immunohistochemistry study, animals were submitted to 21 days of consumption of ethanol followed or not by 72 hours and 21 days of withdrawal previously perfusion, brain tissue preparation and quantification of serotonin dyed cells in the dorsal and caudal portions in the dorsal raphe nucleus. Behavioral data showed that both short- and long-term ethanol withdrawals reduced the open arms exploration in the EPM. In the open field test there were no locomotor activity changes during the total 15 minutes; however, longterm ethanol withdrawal reduced the exploration in the center of the open field during the first 5 minutes. In the immunohistochemistry step, there were no differences, when short- and long-term withdrawn groups were compared with control group; nevertheless, the chronic consumption of ethanol decreased the number of serotonergic immunorreactive cells in the dorsal part of dorsal raphe nucleus. Taken together, results here obtained suggest that both short- and long-term ethanol withdrawals promoted an anxiogenic-like effect that was not related with changes in the serotonin immunorreactivity in the dorsal and caudal parts of the dorsal raphe nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aims to investigate the Hedge Efficiency and Optimal Hedge Ratio for the future market of cattle, coffee, ethanol, corn and soybean. This paper uses the Optimal Hedge Ratio and Hedge Effectiveness through multivariate GARCH models with error correction, attempting to the possible phenomenon of Optimal Hedge Ratio differential during the crop and intercrop period. The Optimal Hedge Ratio must be bigger in the intercrop period due to the uncertainty related to a possible supply shock (LAZZARINI, 2010). Among the future contracts studied in this research, the coffee, ethanol and soybean contracts were not object of this phenomenon investigation, yet. Furthermore, the corn and ethanol contracts were not object of researches which deal with Dynamic Hedging Strategy. This paper distinguishes itself for including the GARCH model with error correction, which it was never considered when the possible Optimal Hedge Ratio differential during the crop and intercrop period were investigated. The commodities quotation were used as future price in the market future of BM&FBOVESPA and as spot market, the CEPEA index, in the period from May 2010 to June 2013 to cattle, coffee, ethanol and corn, and to August 2012 to soybean, with daily frequency. Similar results were achieved for all the commodities. There is a long term relationship among the spot market and future market, bicausality and the spot market and future market of cattle, coffee, ethanol and corn, and unicausality of the future price of soybean on spot price. The Optimal Hedge Ratio was estimated from three different strategies: linear regression by MQO, BEKK-GARCH diagonal model, and BEKK-GARCH diagonal with intercrop dummy. The MQO regression model, pointed out the Hedge inefficiency, taking into consideration that the Optimal Hedge presented was too low. The second model represents the strategy of dynamic hedge, which collected time variations in the Optimal Hedge. The last Hedge strategy did not detect Optimal Hedge Ratio differential between the crop and intercrop period, therefore, unlikely what they expected, the investor do not need increase his/her investment in the future market during the intercrop

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flowering is a physiological process that it is vital for plants. This physiological process has been well studied in the plant model Arabidopsis, but in sugarcane this process is not well known. The transition of the shoot apical meristem from vegetative to flowering is a critical factor for plant development. At Brazil northeastern region, the transition to flowering in sugarcane has an important effect as it may reduce up to 60% its production. This is a consequence of the sugar translocation from stalks to the shoot apical meristem which is necessary during the flowering process. Therefore, the aim of this work was to explore and analyze cDNAs previously identified using subtractive cDNA libraries. The results showed that these cDNAs showed differential expression profile in varieties of sugarcane (early x late flowering). The in silico analysis suggested that these cDNAs had homology to calmodulin, NAC transcription factor and phosphatidylinositol, a SEC14, which were described in the literature as having a role in the process of floral development. To better understand the role of the cDNA homologous to calmodulin, tobacco plants were transformed with overexpression cassettes in sense and antissense orientation. Plants overexpressing the cassette in sense orientation did not flowered, while plants overexpressing the cassette in the antissense orientation produced flowers. The data obtained in this study suggested the possible role from CAM sequence, SEC14 and NAC in the induction/floral development pathway in sugarcane, this is the first study in order to analyze these genes in the sugarcane flowering process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria is a major parasitic disease worldwide, accounting for about 500 million cases and causing 2 million to 3 million deaths annually. Four species are responsible for transmitting this disease to humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. The parasite resistance to antimalarial drugs and the usual limitations of the vector control implications are contributing to the spread of the disease. The most of significant advances in the search for new antimalarial drugs is based on natural components, the main ones being currently used antimalarial drugs derived from plants. Research on natural products of marine origin (particularly algae) show that some species possess antiplasmodial activity. Knowing that the coast of Rio Grande do Norte is home to several species of algae, the present study was to evaluate, for the first time, the antimalarial activity of ethanolic extracts of seaweed Spatoglossum schroederi, Gracilaria birdiae and Udotea flabellum against Plasmodium falciparum 3D7 strain tests and in vitro using the murine model (Plasmodium berghei) for evaluation in vivo. These species were ground, macerated with ethanol for 24 hours and the extracts concentrated in rotaevaporador (45 ° C ± 5 ° C). For in vitro tests, the extracts were diluted and tested at concentrations between 100 and 1.56 μg/ml (seven concentrations in triplicate), in order to obtain IC50 of each extract. The cytotoxicity tests with macrophages and BGM were performed using the MTT colorimetric assay. BGM macrophages and cells were distributed in 96 wells per plate (1x 105 to macrophages and 1x104 cells per well for BGM) and incubated for 24h at 37 ° C. The ethanol extracts were diluted and tested at concentrations of 100 to 1,56 μg/ml (seven concentrations in triplicate). After periods of 24 hours of incubation with the extracts, 100 μg of MTT was added to each well, and 3 hours elapsed, the supernatant was removed and added 200 μl of DMSO in each well. The absorbance of each well was obtained by reading on a spectrophotometer at 570 nm filter. To evaluate the acute toxicity in vivo, Swiss mice received a single dose (oral) 2000 mg/kg/animal of each extract tested. The parameters of acute toxicity were observed for 8 days. For in vivo tests, Swiss mice were inoculated with 1x105 erythrocytes infected with P. berghei. The treatment was given first to fourth day after infection with 0.2 ml of the extracts in doses of 1000 and 500 mg//g animal. The negative control group received 0.2 ml of 2% Tween-20, whereas the positive control group received sub-dose of chloroquine (5 mg/kg/animal). The assessment of antimalarial activity was done by suppressing suppressing the parasitemia at 5 and 7 days after infection. The growth inhibition of parasites was determined relative to negative control (% inhibition = parasitaemia in control - parasitemia in sample / parasitemia control x 100), the mortality of animals was monitored daily for 30 days The results showed that algae Spatoglossum schroederi and Udotea flabellum showed antimalarial activity in vitro, with reduced parasitemia of 70.54% and 54, respectively. The extracts of the three algae tested showed moderate to high cytotoxicity. Algae S. schroederi and U. flabellum were active against P. berghei only at doses of 500 mg / kg with reduction ranging from 54.58 to 52.65% for the fifth day and from 32.24 to 47.34% for the seventh day, respectively. No toxicity was observed in vivo at the dose tested, over the 8 days of observation. Although preliminary data, the bioactive components in those possible seaweed may be promising for the development of new anti-malarial drugs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition